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CELESTIAL MECHANICS AND ASTRODYNAMICS

A TRAJECTORY OPTIMIZATION TECHNIQUE
BASED UPON THE THEORY OF THE SECOND VARIATION

*
Henry J. Kelley
Analytical Mechanics Associates, Inc,, Uniondale, N.Y.

and

Richard E. Koppf and H. Gardnex Moyeri

Grumman Aircraft Engineering Corporation, Bethpage, N.Y.

Abstract ﬁé' [5 :

A successive approximation method based upon the theory of the
second variation is developed. In the early stage of computation,
the process behaves much like the gradient/penalty function pro-
cess with boundary conditions met only approximately. In the
terminzl stage, convergence more rapid than that of a gradient
method is achieved with "exact" satisfaction of boundary condi-
tions an integral part of the process. Since the equations of
variation cf the Euler-Lagrange equations are employed in the
computational scheme, only slight additional effort is required
to perform a check of the gereralized Jacobi (Mayer) condition.

Introduction

Research in methods for numerically determining optimal trajec-
tories has taken, in the main, two directions: study of steep
descent processes in various versions, 1°° and development of
iterative solution schemes for the Euler-Lagrange equations, 9-19

The strong points of steep descent processes are that conver-
gence does not depend upon availability of a good initial esti-
mate of the optimal trajectory as a starting point, and that they
seek out weak relative minima as distinct from points at which
the functional is merely stationary. The main weakness in prac-
tical applications is that convergence slows in the terminal
phase of the process as the optimel trajectory is approached. As
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ence, New Haven, Conn., August 19-21, 1963, This research was
sponsored by U.S. Air Force Office of Sclentific Research,
Applied Mathematics Division, under Contract AF49(638)-1207, and
by NASA Manned Space Flight Center under Contract NAS9-1147,
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CELESTIAL MECHANICS AND ASTRODYNAMICS

with other methods, there is difficulty if either the Legendre-
Clebsch condition or the generalized Jacobi condition i~ met only
marginally, i.e., if the solution exhibits either singular sub-
arcs or conjugate endpoints, and this appears in the form of con-
vergence so poor that, practically speaking, the method fails.
Except in these cases, an a posteriori check of the Weierstrass
condition will establish the weak relative minimum obtained by
the process as a strong relative minimum if the strerngthened form
of the condition is met.

Iterative solution of the Euler equations requires a good first
estimace of multiplier initial conditions in crder to converge at
all. Convergence of the process is assured, theoretically, if
the trial initial conditions are sufficiently close and if the
solution is nonsingular with nonconjugate endpoints. The estabdb-
lishment of minimality requires separate checks of the Weierstrass
and generalized Jacobi conditions. The latter is someuwhat complex
computationally and has been only rarely performed in practice.
Convergence as a practical matter is troublesome, particularly
so in the case of atmospheric flight of lifting vehicles.9 Some
success has been realized in the initial value iteration approach
in the computation of optimal rocket trajectories in vacuum.ll-1
Even in this class of comparatively well-behaved Euler solutionms,
the main practical difficulty is in obtaining a trial solution
whose end conditions approximate those desired. An attractive
feature of the method is fast convergence in the terminal phase
of the computation. A refinement of the mechod is the use of a
linearized version of the Euler equations to obtaip the elements
of the transition matrix needed in the iteration.!*:15 1In the
work of Ref. 15, a separate computation via gradient method was
employed to obtain the first estimate of the multiplier initial
values. A different sort of iteration scheme tailored to "bang-
bang" control problems is reported in Ref. 16. A method based
upon the Euler-Lagrange equations and a generalization of Newton's
method has been investigated in Refs. 17, 18, and 19, but has
received little attention in trajectory applications. The rela-
tionship of this method to that which we discuss herein will be
examined in the latter portion of the paper.

In the present paper, we present a successive approximation
technique based upon the theory of the second variation. As with
gradient methods, the initial trajectory estimate is required to
be neither optimal nor necessarily a good approximation. In the
initial phase of computation, the penalty function treatwent of
terminal conditions is employed and the behavior of the process
strongly resembles that of a gradient/penalty function process as
a result of step size constraints being operative which limit the
amount of improvement sought during each cycle. These constraints
are progressively relaxed, finally dropped, and the terminal
penalty scheme discarded in favor of "exact" terminal conditions
that are ultimately satisfied if a solution exists, in the sense
that the specified conditions are attainable. This second phase
of the process is computationally similar to iteratiom on the
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CELESTIAL MECHANICS AND ASTRODYNAMICS

Euler equations and shares the feature of fast terminal conver-
gence.

Problem Formulation and Penalty Function Approximation

We begin with a statement of the trajectory optimization prob-
lem in the usual Mayer format. Given a system of first-order
differential equations

*i = gi(xl’ ooy xn’yl’ seey Yg:t) @)

it is required to find a solution of this systeﬁ satisfying cer-
tain specified initial and terminal conditions and providing a
mininum of some function P = P(xlf, ceey xnf, tf) of the ter-

minal values of the variables *y and the terminal time. The
variables xjy, i =1, ..., n, are state variables and the

yes k=1, ..., 4, control variables. The latter may be subject
to inequality constraints of the form

yklsyksykZ k=1, ..., £ (2)

as subsidiary conditions of the problem. We will deal primarily
with the relatively simple case in which such inequality con-
straints are absent, adding some comments in the latter portion
of the paper on the treatment of inequalities.

For simplicity of presentation, we will assume that all of the
initial values of the xj are fixed at a specified initial time

tO:

xi(to) = xio i=1,

..y M 3)

The terminal time tgy will be regarded as umspecified, which is
more often the case than not in applications. The terminal
values of the first m of the x; will be taken as fixed:

xi(tf) = xif i=1, ..., m B (4)
and those of the remainirg ones unspecified. Some or all of the
terminal values of the y i=m+ 1, ..., n may appear as argu-
rents of the function P “whose minfmm is sought. The particu~
‘ar form of boundary conditions chosen here for definiteness is
reasonably typical of problems arising in applications, and, in
any case, modification of the ensuing arnalysis to accommodate

other types of boundary conditions will present —o essential
difficulty.
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An alternate formulation of the problem is given in terms of an
approximation employing an augmented function of the terminal
values:

P' (xlf""’xnf’tf) = P(xm + lf,...,xnf,tf) +
(5

m
N 2
K.{x., - X,
: 'Zl J(fo fo)

A minimum of the function P' 1is to be sought without specifica-
tion on the terminal values of the xj. With Kj >0, j=1,
..., my, the second member of (5), which may be “termed a
“"penalty function," will be positive if there are deviations from

the desired terminal values Xﬁf. If the Kj are chosen to be

numerically large, it may be anticipat . that a trajectory, opti-
mal in the sense of minimizing P', will come close to meeting
the desired terminal conditions, provided, of course, that these
are attainable., One advantage of a peralty function treatment of
terminal conditions is that a solution of the problem may be com-
puted even though the desired terminal conditions are unattain-~
able, i.e., even if no solution exists for the corresponding
problem stated in terms of fixed terrinal conditions. In such
cases, the resulting solution, which 2ails to closely approximate
the desired terminal conditions, may . of considerable value to
the analyst in establishing physicall' reasonable terminal speci-
fications for families »f solutions, information which is avaii-
able a priori only rarely. The basis, genesis, and application
of the penalty function technique are discussed in Ref. 1.

An Expansion about a Reference Trajectory
In the classical theory of the Mayer problem, the constraints

given by the differ.n=ial equations (1) are adjoined to the func-
tional P' by means of Lagrange multipliers:

tf o
J = P'(x1 veers® “tf) + 5‘ xi(- ii + gi)dt (6)
£ J t i’l
o

and an expansion of J is performed in the neighborhood of a
reference trajectory ii(t)’ ;k(;),
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CELESTIAL MECHANICS AND ASTRODYNAMICS

J=J0+J1+%JZ+... (N

Here, J, = P! (Elf, cees Enf’Ff , since the integrand in (6)

vanishes along the reference trajectory, which is presumed to
satisfy the system (1). J; and J, are, respectively, the
collections of first- and second-order terms ir the variations
Bxi, Byk cf the state and control variables from those of the

reference trajectory; they are known as the first and second
variations. Since the analytical form of the second variation
Js appearing in the classical literafure corresponds tc the case
of a reference trajectory that satisfies the Euler-Lagrange equa-
tions of the problem as well as the system (1), the following
derivation of the slightly more general form corresponding to a
reference trajectory that satisfies only (1) is needed.

An expansion of the function P' in the neighborhood of the
terminal point of the reference trajectory is given by

t = P! (v < T
P P (xlf""’xnf’tf) +

n n a2
P!
3 z Wi X, Axifojf+ (8)
i=1 j=1 £ g
n
32pt
z S—-T_xi E; Axf&tf+
i=1 f
2
3 Lo 28 5t 2 + ...
te

Since we desire vlcimately to obtain an approximation from (8)
valid to second order in control variations &y, (t), evidently
we must employ estimates of the state variable terminal incre-
ments Axif which are correct to second order in the control

variations, at least in the first-order terms of (8). A first-
order estimate of the variations in the state variables is given
by the soiution of a linearized version of (1):

(V44
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CELESTIAL MECHANICS AND ASTRODYNAMICS

dgi £ Bgi
5xi = ) 5% SXJ + 2 g;; Syk (9)
j=1 3 k=1
i=1, ..., n
ﬁxi(to) =90 (10)

in which the partial derivatives of the functions g; are eval:i-
ated along the reference trajectory. An alternate and equivalent
first-order estimate of & at the terminal time of the rarer-
ence trajectory t. is given by

t
f
_ !,
axi(tf) = 2 5—;}: 5 dt (11)
k=1
t
0
n
The functi~n Hi = K§i) gj is defined in terms of that
j=1

solution x§1> of the adjcint system

. Bgi
Ay = - Z N oS j=1, ..., n (12)
i=1 3

which corresponds to the special boundary conditlons
xj(tf) =1 j=1

(13)
=0 J#1

A second-order estimate of the increment in x, at t = Ef
is given by the integral

Ef

¢, (€, % ' ) (14)
t - ‘5'—5)' + o dt

1\tf i, (k-l Ve k0L

o

= R P
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where

n n 32H

- 1
= ) ) ek 0% OX 4

p=l q=2 P 4

A
2 z z bep 5y, + (15)
p=l k=1 P
A W
k=1 s=1

The second member of the inteyrand of (14) utilizes the influence
functions of (12) and (13) to obtain an estimate of the effects
of the second-order terms in the 8¢ that were omitted in (9).

A corresponding estimate for the increment in x; at a variable
terminal time te = Eé + th is given by

in which the abbreviations 6xi. = Bxi(-ff), f»if = €,(t). . i
= gi(;lf, cees ;Qf, ;If’ cers ;3f' t;) are employed.

Substituting (16) into (8), and discarding terms of order
higher than second, we then obtain the desired second-order
approximation to B
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o+ 3+ 34, = P'(Ilf,...,T:nf,'c'f) +

n n Bgi

op' . £
z e [gif + Cgif + z 5 ijf +
i=1 f j=1 JIf

2 Bgi n agi

£ £ —
T ¥ ) Btg % ( ST 8 *t
kzl Tke ) 321 Yy Ot

T ogy . .
Z'a'yk "kf S*tf> £ )73, °FT
k=1 £
o n an
v a 1"' -
3 Z Z 3, o, (6x1f+gif 5tg) -
i=1 j=1 ‘¢ Jf
+g, ot +
(5xjf gjf b f)
o % =
z Sose (ox; +gy btp) btg +
i, f £ £
i=1 b3
2,5,
% ‘:—2‘2' Btfz
te
Here, 5y and 6t have been regarded as first-order quanti-
£
ties and the difference beiween £ 1 and Bxi as of second order.
3 £

It is of interest to relate this expression to the classical
development in which the reference trajectory is an Euler solu-
tion, for tae case of open terminal conditioas on tlie atate vari-
ables and the terminal time. The functions H and o appearing
in the classical development are

n
- opP'

H = 2 S5— W (18)
1al  1g

[ NN
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-7 . CELESTIAL MECHANICS AND ASTRODYNAMICS (i

i .
P'
o= S @ (19)

Lo ) z xi i
“ _ i=1 £ B,

A and the multiplier fuactions are corresponding linear combinations
F; ) : > of the fundamental solutiocns )\§i) of the system (12) defined by

{ : c

e . c the unit terminal conditions (13). -If inequalitv constrainis on
s - the controi variables- yx are absent, the Euler-Lagrange equa-
_ tions for the control variaples are . s

e m %-— -0 k=1, et @0
T TJ “k \'1 T - ,‘L___

- b > -~

O

and certain tetms “in (17) wbi.ch contain Syk(t), ayk s, and
£

-
s

disappear. ?-A : ” S
f. - S : - o

Successive Approximation Process =

5 -He cons ider’ the possibﬂity of determining control increments .
: Syk(t) _toat minimize the second-order approximation to P'

‘given. by (17) > This variational problem is of Bolza form owing Z
. to the appearance of the integral _ o

te - ) : .

- N 2’ Tom - .
e . Y g— 51 - } <§“—k 5y, + ®)dt (21)
: L im £ — ’

O g . . - ;d“ ‘- o

In the expression (17) - As subsidiary conditions of the varia-
=’#.  tional probiem, we have the system of differential equations (9)
vwhich defines tke 5x; (t). If the réference trajectory satisfies

T the specified ini.ti.al cond:lti.ons, which we shall assume to be the
.- - = case, the appropriate initial conditions on the 6x, are

T o OX (t ) = 0. Terminal conditions on the 61:1‘ are %specifi:ed;

S as. is the inctement in t:ermiual time ~5tf, - The quadratic/linear

L fomc of this Bolza sariational problem is comput:atiﬁnally
at.tract:i.ve,» and this provides a primary motivation for the
" approach’ to the successive approximat:lon process present:ly under
. uconsidcration. -"c_ LY , N -

’ :’ Adjo.n:l.ng he d:l.fferent:tal constraints- (9) with Lagirange multi-

pl:!.ers 57‘1’ i=1, J.., n, we proceed ‘to write the Euler-

e%uat,ions, the Weferstrass necessary condition, and the
sa 1t:

g trsnsver y cond:l.t:i.ons for the problem.— The Euler-l.agrange

Q
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CELESTIAL MECHANICS AND ASTRODYNAMICS

equations corresponding to the state variables are:

. i dg.
BA, = = ) BA, - 3 o (22)
i _‘?41 J &i‘ b %,

= i

i=1, ..., n
The Weierétrass necessary condition takes the form
* B
h(5y; 5.--58y, ) > B(6yys--.50Y,). (23)

*
in which the 5Yy » k=1, ..., 8, are arbitrary. The function
h is given by

£ 531
257\ (Zrax Zé—y;ayk)+
j=1 k=1 ‘ (26

z oy, + @
k—layk

Owing to the linear/quadratic form taken by h, the Welerstrass
necessary condition is equivalent to the Legendre-~Clebsch necess-
ary condition and the Euler equations for the 5yy. This would
not be the case if considerations included inequality constraints
on the control variables.

The transversality conditions corresponding to open axj are

£
n bgi :
Jp’
‘ a-—a“ £+ Z 5”*3“—(5" BT
1=1 Ig 1=1 g I
2 (25)
3°p!
5——-5—- th jf =0 j=1, ..., n
and to open atf
n n 5 ‘n Bg 2 agi»
« OP'_ - op! ) «
) gt t ol 2 oy +Z s—ﬁykf)*“
i i j
i=1- °f i=1 £ 3= f

/0
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CELESTIAL MECHARNICS AND ASTRODYNANICS

- oo L% . %y
(Y == g+ y Tkt rt:) st ] +
=L 9f k=l °f
(26)
n n 2 ;
4 g, (6x, + pt.) +
z ZSxi B';j i Pk DS P
i=1 j=1 tf I
n 32"
(o] ' =
), 3x; Se; 0% * 28y otp) + =7 ot = 0
i=1 't £

The analysis of our successive approximation process bears a
resemblance to that of the classical accessory minimum problem
for the second variation. In the classical-analysis, the refer-
ence trajectory satisflea the Euler-Lagrange equations and the
transversality conditions for the problem of minimizing P'; the
requirement of positive semidefiniteness for the second varia-

. tion suggests the problem of minimizing the second-variation,

the so-called accessory minimum problem. -The analysis leads to
the Legendre-Clebsch ard generalized Jacobi (Mayer) necessary
conditions. A main feature of the analysis, in the absence of
inequalit; constraints on the control variables, is that the

- Euler-Lagrange equations and transversality conditions of the

accessory problem are precisely linearized versions of those for
the original problem of minimizfag P'. Such is also the case in
the present analysis, with the slight but important difference
that curtain zero-order terms remain in the linearized -expres-
sions due to the nonoptimality of the reference trajectory. A
somewhat analogous approach, employing an optimal reference tra-
jectory, has been taken in Ref. 20 in connection with an optimal
guldance approximation scheme.

In the present application - the determination of an optimal
trajectory through successive improvements on & nonoptimal refer-
ence trajectory - there is a question concerning the existence of
2 minimum of (17) and a related yuestion concerning the conver-
gence of the process. If the reference trajectory were close to
the optimal trajectory sought, existence and convergence argu-
ments of sorts could be built around this fact. Such a require-
ment on the reference trajectory chosen as a starting point for

-the computational process would, however, obviocusly represent an

undesirabie restriction. On the other hand, i{f th. reference
trajectory satisfi:s only the basic system (1) and the initial
conditions. ‘out is otherwise arbitrary, there is no assurance
that a minimum of (17) exists, and, in fact, it will commenly be
the case that (17) is unbounded below. If, for exsmple, the
function h given by (24) has no minimm in the 5% the ques-
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CELESTIAL MECHANICS AMD ASTRODYNAMICS

tion of existence of a minimum of the approximation is settled in
the negative. Thus, at least in the early phase of the computa-
tional process, it appears nzcessary to introduce restrictions c..
the "step size" as measurzd in terms of the norms of the functions
6y, (t). We therefore alter the problem by the introduction of
additional subsidiary ~onditions given by the equations

6%, = 3 5yk2 ox_a(€) =0 k=1, .., ¢ (27)

defining variables 5% 41 whose terminal values 6xn+k(tf) are

integral square measures of the magnitudes of the control variable
increments Gyk(t).

with the consiraints (27) adjoined by means of additional multi-
piiers 525 * = al, ..., nte, the analysis proceeds as before,

and the Euler-Lagrange equations (22) and the transversality
conditions (25) onc¢ (26) are unchanged. The Euler-Lagrange equa-

tions corres,ording to the variables 2R SHP k=1, ..., £ are

BA 4y = O k=1, .c., £ (28)

indiceting the constancy of these multipliers. The Weierstrass
necessary conditior is given by

N * * A
h(Eyl 9 seey Byﬂ Y > h(ﬁyl. seey Syg) (29)

A
in which the Byk are arbitrary, and the function h {is given
by

n a 4
h= oA, () it ) +
() = ZTkYk)
i=1 j=1
) £ : - (30
oH 6y, + o + % BA 5
}E 3y, Tk }: ok ’ﬁ;
k=1 7 k=]

the last nember arising from the additional constraints (27).

The Welerstrass necessary condition (29) provides information
of value in the choice of the constraint multipliers BNy i=

ntl, ..., n+s, this choice being equivalent to the establishment
of the step gslze parameters ﬁxi(t )y L =n#l, ..., o+l In the

case of an unbounded control varisble Vgr for example, a re-
quirement for the fumction b to possess a minimum is

o
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CELESTIAL MECHANICS AND ASTRODYNAMICS 1A

azhz - 52“2 +oh, >0 (31)
By oy -

S 8

and if Bzﬂlbysz take: on negative values along the reference
trajectory, a An4s > 0 at least large enough in magnitude to

satisfy (31) will be required to satisfy (29). More.generally,
the 57\1, i=ntl, ..., n+f, must be chosen at lgast large

enough in magnitude to insure that the function h possesses a
minimm

If the multipliers 67\1, i=n+l, ..., ntl, are assigned

large positive values, corresponding to a restriction to very

small step size, the successive epproximation process described

by our analysis becomes a gradient process. In this case, the =
process would ultimately approach a weak relative minimum of P’,

provided that a minimum exists, since its nature is not such as

to seek out stationary points of nonminimal character, and the

generalized Jacobi necessary condition would automatically be

satisfied.

As a practical matter, it seems appropriate to choose values
for these multipliers somewhat larger than necessary to satisfy
the Weierstrass condition (29), but not so large as to adversely
affect the speed of convergence of the process. A conservative,
but computationally expensive procedure would be to perform the
generalized Jacobl test for the problem of minimizing the approxi-
mation (17) at each step of the process, thus insuring that the
step-size wultipliers have beén chosen large enough to exclude
generalized conjugate points from the interval t o < E< by
A more practical procedure, having an element of a gamole, would
be merely to check at each step whether or not a decrease - P'
has been realized, and to perform the generalized Jacobi. test
only on the specimen finally obtained after zhe process has con-
verged. We will discuss the Jacobi test procedure subsequently.

A point neglected in the preceding analysis is thc determina-
tion of control increments at the terminal point of the reference
trajectory Gykf = &yk(tf) .which enter the expression (17) whose

minimum is scught and which appear consequently in the trans-
versality condition”(26). If continuity were required of the
control variables Yy: @and hence of the- 5y, the control

ipcg\ements at t = 't-f would be determined by the operation

min h  just as at interior points of the interval t 0 S tL -Ef.
byk -

The introduction of such a continuity requirement at the termin-

al point is a feasible, if rather arbitrary, means of handling
the matter. If, on the other hand, the 8ykg are regarded as. free
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CELESTIAL MECHANICS AND ASTRODYNAMICS

4

of choice, it follows that they must be chosen so as to provide a
minioum of (17). Since the by,  appear linearly in (17) with
coefficients f

n og
rap' i Bte = e’ 5t
Z Xy %k f %k f
1=1 £ £ £
it is possible that no such minimm exists. This situation will
definitely arise in the case of a control variable y g? which is
not subject to an inequality constraint of the form (2) if
OH, " .
$£0 and st. £ 0.
s, £

Such considerations suggest the possibility that the control
variables chosen for the reference trajectory should not be com-
pletely arbitrary but rather should be taken such as to minimize

o~
1

in the vicinity of the terminal point. The course of action
adopted is probably not of key importance computationally, since
the effect 18 local, and

H
B
.
H
i
3
b
{
H

P!
Hf = z 5x1 g:Lf
i=1 £

will rapidly approach a minimum in the Vi in any case.
£

Computational Procedure for the Panalty Function Process

A possible sequence of calculations is the following:

1) Integrate mmerically the system (1) employing the given
initial conditions and stored first estimates of the control
variables yk(t). o

2) Terminate the trajectory at a cime t. determined so that
P' regaxded as a function of te along thé trajectory attains a
minioum, and hence that

'd—:' P' = 0, This technique has previ-
¢ .
‘ously been employed in the gradient/penalty functiom pz'o:a:eas.]"2
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3) 1Integrate the adjoint system (12) backwards in time employ-

- ]
ing terminal values Ai(tf) = 5%2_ . Store the initial values
i
f
ki(co). Calculate the coefficients appearing in the function h

gii) during this integration, and select the 52y i=n+l, ...,

4) Generate by mumerical integration a matrix solution of the
combined system (9) and (22) with 5¥) determined by the opera-

A
tion min h, 1i.e., perform n integrations concurrently with
ﬁyk
unit matrix initial values of the 6%1, i=1l], ..., n, and all

tix.i initial values zero. Regenerate the reference trajectory

and the adjoint solution concurrently for the purpose of calcu-
lating the coefficients of the combined system.

5) By linear algebraic opérations, determine the initial
values of th: aki, i=1, ..., n, and the value of bte that

satisfy the transversality conditions (25) and (26).

6) Employ the axi initial values so determined for another
integration of the combined system (9) and (22)., Add the 5¥y

generated in this solution to the stored y,. Thie furnishes
the control functions for a new reference solution.

7) Repeat step 1, starting a new cycle. Compare the value of
P' obtained in step 2 of the new cycle with the previous vaiue
of P'. The process repreats until decrements in P' become
small.

Refinement Process

On account of the penalty function approximation, the process

described will converge to a solution whose terminal state vari-

A

able values differ from those prescrived. For large positive A

values of the penalty constants K,, the differences will be

small unless the prescribed terminal values are unattainable.
The penalty function formulation of the problem scrves its pur-
pose in permitting a deotermination of whether or not this is the
case and by providing a scalar measure of convergence -~ the
decrement in P°'.

In examining the refinement process described in the following,
we assume that the penalty function process has converged closely
enough to a minimm that the step size constraints (27) are no
longer necessary and thet the adjoint variables approximate the
multiplier functions of the fixed endpoint problem.

15
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We adopt an expansion for the function P simiJar to that
given by (8) for the function P':

7l
- - oP d
P=P(X 15 coes X ,t) + 2&_ AxiF+§£—6tf+
£ £ femyy, ¢ F E
n n n
2 2
P < 7P
3 2 z % ox Axifojf + Z 5%, ot 5 Axifﬁtf +
i=mtl j=m+l £ If i=mtl  °f (32)
2
e 2y
ot 2
£

The fixed state variable terminal corditions will be

?Eif + Axif - 'iif= 0 i=1, ..., m (33)
Here the Kif are specified values, the ;if those of the ref-
erence trajectory obtained via the penalty function version of
the process, and the Axif are the second-order approximatione
to terminal value increments given by (16). The constraints (33)

may be adjcined to (32) by means of additional multipliers Bys

i=1, ..., m, and an approximation sought to the augmented
expression which is valid to second order. Approximating the
o to zero and first order terms as

By =By + Bui i=1, ..., m (34)

and taking By for the first refinement cycle as the terminal
value of the adjoint variable A, obtained in the penalty func-
tion approximation

i

- 3p!
hy - 5;11’—- {=1, ..., m (35)
£

we obtain the desired second-order approximation to P as

n
- - = JP
JO+JI+§J2 - P(xlf, ceey xnf, te) + z 3-;‘-1—[&1; Cg'if+
i=mtl £
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¥4
n agif Y] Bgif n Bgif_
‘_‘ .
Lo oN ) w )stet () et
j:l jf k::l f j=1 f
£ Og . Bg n n
2 +5—-if 5t 2} FE se. 43 y ¥ o ><
2 5yk ykf tf> £ St_:; £ Sxi 5xj
k=1 °f femtl j=mtl £ If
+g, 5t (6x, +8g, 6t )+
(O, * 8y St (0%, + 8y 0%
n
2 2
a%p - L% 2
3-——7—&1 E; (axif + gif Btf> 5te + % -——at 7 0t +
L=nrtl £ £
(36)
m n Bgi £ Bgi
“-[E + (8, + B——fﬁx + y 5——f6 ot +
L Hy if ‘\gif E xj 3 £ L 4 ykf) £
i=1 j=1 £ k=1 £
n Bgif y] Bgii _ agi 1
%(Z gij——gjf+z Ez—ykf'i-g";—%ﬁtf +xif-x1f]+
ju=1 £ k=l °f
T
b, (6%, + g At.+x, - %
121 1 (0% Y8y "Ee %))

In this second-order approximation, Sxy and Bty have been
£
regarded as of first order and the difference between ¢ 1 and
f

5x1 as of second order.
£

The transversality conditions corresponding to sxj are
£

n og 10 m og 1

z B—?‘i—gx——ﬁtf+ Z "Tiax_fatf"'su'j-a)‘jf-o
{=ptl 1 Jg i=1 g

j=1, ..., m (37)
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n dgi m Bgi
VO fhe o+ T OE ——Lsr, +
/. ox x. ~ f LM 3k f
f=ml g If i=1 g
S i (® + ot.) +
z sxi ox, X s f
i=m+1l £ It
(38)
azp .
Wﬁtf-ﬁl. =0 j=mkl, ..., n
"jf £ Ig
to 5t.
n n agi ag n ag
P [=
Dl Twte ] T L
1=m+1 £ j=1
2 og og
1 - 1
%=1 kf £ jemn1 j=m+1 i g
o 3%
(ox; + 2g, ©St.) + —— bt +
5 5 Lg Tl E T 20 f
i=m+1 "f £ f
m n Bgi
Z by [ g + y -é— 5%, (39)
1=1 g: 13 e "
£ Bg n Bg £ Bgif . agif
Y 55— +< Y s gjf + Y Sy Tk +5—tf> btf] +
k=l =] k=l £
m
z buy g = O
and to au.j i=1
+ btg + X, =0 j=1 n (40)
6xj gjf xjf jf 9 sevy
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Examination of these relationships establishes that they are
linearized versions of the transveirsality conditions for the
original problem. In the case of (39) it is convenient, computa-
tionally, to eliminate the &u, employing (37), and introduce

the 57‘;} from (38) where appropriate. Since the &p j do not
£
appear elsewhere, (37) can then be dropped.
Computational Procedur: for the Refinement Process

The procedure for refinement process calculations is gemerally
quite similar to that sketched earlier for the penalty function
process, with the following exceptions. Trajectory termination
time te is taken to be te + 6t of the preceding cycle. The

adjoint system solution is integrated nmumerically forward in time,
with initial values YIS Gki s, 1i=1, ..., n, of the preceding

o
cycla. Terminal conditions of the equations of variation are
(37-40). .

Gena2vdalized Jacobi Test

The generalized Jacobi test may be applied to the soluticn ob-
tained after convergence of the process with only slight addi-
tional computational effort, since it requires the equations of
variation of the Euler-Lagrange equations and the same trans-
versality conditions employed in the successive approximation pro-
cess. The version of the test dealt with here is applicable only
to normal nonsingular extremals. It should be mentioned that a
similar restriction applies to the successive approximation pro-
cess itself. The process faiis in the case of a singular subarc
appearing in the solution due to the indeterminacy of the Weier-
strass condition, and it requires modification in the case of
abvormality phenomena.

The generalized Jacobi test mat~ix is the matrix whose inverse
is required in the computation of the B2 i=-1 ..., n, and

6t. satisfylng, through the equuations of 3ariation of the Euler-
Lagrange equations (22) and the equations of variation of the
basic system (9), the terrinal conditions (37-40). Values of the
indeprndent variable t* 5 t at which the matrix becomes singu-
12 determine generalized conjugate points. The generalized
Jacobi necessary conditiun is the requirement that there exist no
such points in the interior nf the interval t, < ¢ <t

For computation~l test purposes, a rucceszion of times coincid-:
ing with values employed in numerical integration are regarded,
each in turn, as terminal points, the elements of the test matr.x
evaluated jist as in the sucze3sive approximation process, and
the determinant computed.

The vanishing ¢f the determinant along the trajectory
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indicates the existence of a nontrivial solution of the combined
equations of variation that satisfies the linearized versicn of
the terminal conditions. According tc the usual argument, the
nontrivial solution exhibits a cornmer at the point t~, at which
poiat the Weierstrass-Erdmann corner c.nditions are not met, and
hence the zero value of the second variation given by the non-
trivial solution cannot be ths minimum value. The possibility nf
a negative second variation if t_ < t* < te disqualifies the
test extremal as a candidate for a minimizing arc. The general-
ized Jacobi condition, called the condition of Mayer iu the

stronger form appropriate to sufiiciency proofs, is treated in
Refs. 21 and 22.

Treatment of Inequa. .ty Comnstraints on Control
Variables

If inequality constraints of the form (2) are operative, an
analysis <imilar to that preceding may be carried out., The diff-
erence is that the minimum operation on the function h given by
(30) is subject to inequality constraints ocu the &y, derived
directly from (2) and the control functions y,(t) of the refer-
ence trajectcry. In this casc, the solution of the two-point
boundary problem for the minimum of the approximation (17) or (36)
cannot be carried out by linear operations, and an Important
advantage 1is lost.

In flight perforuance applications, an inequality const+aint on
a control variarie is usually associated with the appear...ce nf
the control variable in the basi. system (1) linearly, If the
optima) control is bang-bang, it will usually be advantageous to
deal with switching times as control parameters, in which case
lineer mechods may then be employed for treatment of the two-
point voundarv problem arising in the successive approximation
process. If nou, the occurrence of a singular subarc in the solu-
tion is implied z.d existing numerical schemes fail.

Relationship to Other Computational Techaiques

The present scheme has similarities to two existing techmniques
based upon the Euler-Lagrange equations. The firet of these is
the generalization of Newton's method studied in Refs, 17-19 but
ne- er applied numerically to trajectory problems, to the writers'
knowledge. The main difference is in the penalty function
approximation and in the use of the step-size constraints employ-
ed in tne present method to insure the satisfactior. of the
Legendre=Clebsch necessary condition. It should be noted that
the straightforward use of Newton's method may yield a process in
which the function h of (24) is maximized rather than minimized
over certain intervals, and that the trajectory obtained by the
couverged process may consequently fail to sitisfy the Legendre-
Clebsch cundition, and hence not furnish a minimum,

The rafinement process presently described would be similar to
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: . the methods of Refs. 14 and 15 if each new reference trajectory
- were obtained via the Euler-Lagrange equations, with the solution
. of the two-point boundary value problem employed only for compu-
tation. of new multiplier initial values. The limitation of such
a technique is that a good first estimate of multiplier initial
values is required for comvergence. In the present method, the
equivalent of this is obtained via the pen.all:y function versiorn
of the pracess whick produces the first approximation for the
refinement process.

- Low Thrust Example
" To illust:rate ‘this second-order computational technique and
compare it with the first-order gradient method, a constant low- - -
. thrust transfer between coplanar circular: orbits has been calcu- =
lated. This particular problem, an Earth to Mars transfer, was
-7 ‘tieated by the “present authors in Ref, i 2 ‘using first-order steep.
. -descent theories. The: system of eq*aations voveming the motion
“#as; giwen by i . . .

"o

Radial Accelera"ione
L = - . T sin 6 . v
g1 - 8( vzo) eIVt (41)

Ci.rcmferential Arceleracion ’ . -

"
3

=, _T.cos @

O ) "’”gz='f‘:‘v’+m-r7v-t F42).
) L - o e” : .
" Radial Velccity
- M - g3 -u. ’ _& ‘ . ;(43) ,':
s AlL the initial and final values of the state variables were v
<, speci.f ed and the trarcsfer time was to be minimized,. 1. e., ]
P = tf : . (44),

"'he second—order de°cent process was coded for-the IBM 7094 ) .-
- gomputer. A modified Adams numerical integration scheme was :
T vsedi - The integration step was fixed at two days, dividing most
of the ttajecl;ories into approximately one hundred intervals.
:- For t:he purpose of coding ‘the first-stage penalty ‘fitnction pro-~
. cess (buc not the second®stage refinement process) the complexity
. '_ + of tﬁe numerical calculation was greatly reduced by setting atf

to zero. JThus, (17) si.mplifi:egl to B B,

N .o
o Pt .ot :
J*-‘x*"”z PLH Z "1 b, . :
D f:,‘ .- (45)

o w v . . ’ |

: AR X k -~
A g . i

)
ﬁ&-&m WM -t -wq..ﬁ 2 s.s‘;“ Hﬁy"ﬁau
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2 X "L EX. Ex: 5xi—6x3—
=1 3=1 ‘g g PO

The control variable Increment &6(t) was then calculated to ob-
tain the maximum reduction in P' at time Lg. Of course when
the trajectory with control variable 6 + 66 was computed, it

was not terminated at time t_ but rather at the point of the
trajectory with minimum P'. Witl respect to over-all computa-
tional time, this technique represents a compromise between a true
second variatioa calculation and additional programming complexity.
For this particular problem, it was advantagecus to treat the
probler as a fixed time problem when computing &6 u51ng penalty
functions.

The initial 6(t) function corresponded to constant circumfer-
ential thrust. This resulted in terminal boundary value errors
.that averaged 207. After 6 descent cycles, using the penzlty
" function procedure, the terminal errors averaged 3% with the
transfer time at 180 days. After S additional cycles of the re-
finement process, the average boundary value error was reduced to
0.05% and the transfer time had reached its minimum of 193 days.
_ The over-all computer time was two min., thus representing half
the computer time required by the first-order gradient program.

Conclusions

The second variation trajectory optimization method described in
this paper is appreciably more complicated than the first-order
gradient theory. It appears, however, to bs economical in the
sense of computing time when many optimal trajectories are to be
computed. In addition, the generalized Jacobi test may be applied
with only slight additional computational effort. As with any-
computational approach to the solution of optimal trajectories,
the effectiveness of the method rests with its judicious applica-
tion. -~
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